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Abstract—The internal competition between categories in the
adaptive resonance theory (ART) neural model can be biased
by replacing the original choice function by one that contains
an attentional tuning parameter under external control. For the
same input but different values of the attentional tuning param-
eter, the network can learn and recall different categories with
different degrees of generality, thus permitting the coexistence
of both general and specific categorizations of the same set
of data. Any number of these categorizations can be learned
within one and the same network by virtue of generalization
and discrimination properties. A simple model in which the
attentional tuning parameter and the vigilance parameter of ART
are linked together is described. The self-stabilization property is
shown to be preserved for an arbitrary sequence of analog inputs,
and for arbitrary orderings of arbitrarily chosen vigilance levels.

Index Terms—Adaptive resonance theory (ART), categoriza-
tion, choice function, discrimination, generalization, neural net-
work, stability, unsupervised.

I. INTRODUCTION

T HE faculty of an unsupervised neural network to learn
intersecting categories, and to respond by more than one

category to a familiar input, is examined. Such a faculty
is necessary for learning and recalling categories exhibiting
various degrees of generality, for example, and for the coex-
istence of general and specific categories on an equal footing.
By definition, neural networks based on the premise that all
categories are mutually exclusive do not have this faculty.

A simple illustration of the desired faculty is shown in
Fig. 1. In this example, a hypothetical neural network has
previously learned categories corresponding to “flowers” and
“tulips.” It can be tuned by means of a parameter controlling
whether the recalled category should be general, or rather spe-
cific, that is, correspond to a broad, or rather a narrow portion
of the input space. In response to an input describing tulips,
when the tuning parameter is set to “general,” the network
chooses the flowers category; and when the tuning parameter is
set to “specific,” the same network chooses the tulips category.

Let us callcategorizationthe mapping that associates cat-
egories with each input in a set. If a neural network can
output only one category per input, the mapping is a many-
to-one relation, and all the categories are mutually exclusive.
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(a)

(b)

Fig. 1. A simple illustration of the multiple categorization faculty. A neural
network has previously learned categories corresponding to “flowers” and
“tulips.” It can recall either category in response to an input describing tulips.
(a) Tuning parameter set to “general.” (b) Tuning parameter set to “specific.”

If a network can output multiple categories, the mapping can
be a many-to-many relation, that is, categories can intersect
and cover each other, and multiple categorization becomes
possible. Alternatively, a neural network having a single output
can be “tuned” to learn multiple categorizations and recall
them in succession, as in Fig. 1.

In this paper, we examine multiple categorization in the
context of adaptive resonance theory (ART), a theory of human
cognitive information processing introduced by Grossberg,
that addresses the stability-plasticity dilemma [1], [2]. More
precisely, we use a self-organizing neural model called fuzzy
ART by Carpenteret al. [3]. This neural network accepts
analog inputs one at a time and develops a categorization.
Familiar inputs activate their category, whereas unfamiliar
inputs trigger either adaptive learning by an existing category,
or commitment of a new category.

Fuzzy ART’s behavior lends itself well to simple geo-
metrical interpretation owing to an internal representation of
category prototypes ashyperrectanglesin the input space.
These hyperrectangles are allowed to overlap each other.
Despite these overlaps, the developed categorization is a many-
to-one relation and the categories are all mutually exclusive.
This is due to the category choice process, by which fuzzy
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ART always responds the same way to a familiar input:
it recalls the smallest hyperrectangle containing this input
[4]. Hyperrectangle overlaps have been argued to be an
inconvenience if categories are mutually exclusive [5]. Our
stance here is that these overlaps can be useful, and we
describe a model that exploits them for multiple categorization.

In order to learn intersecting and overlapping categories,
a neural network must be capable of repressing previously
known categories while it forms new ones. In other words,
it must be able to make temporary abstraction of previous
knowledge. In the context of categories with various degrees
of generality, this can be expressed as two complementary
properties: if a neural network with previous knowledge of
specific categories can learn new, broader ones, then we shall
say that it has thegeneralizationproperty; if it can do the
reverse, then it has thediscriminationproperty. Returning to
the neural network of Fig. 1, generalization would allow the
learning of the tulips category first, and the flowers category
next, whereas discrimination would allow the reverse. In
the case of fuzzy ART, increasing the value of a network
parameter calledvigilance allows formation of new, more
specific categories intersecting broad ones that are already
known. The network is thus capable of discrimination.
However, reducing the same parameter value does not yield
generalization. This is due to the predilection of fuzzy ART
for the smallest hyperrectangle containing the input.

In this paper, it is shown that a simple modification grants
to fuzzy ART both the generalization property and the ability
to tune its attentional subsystem to categories of a desired
degree of generality. What is remarkable is that no additional
structural or functional unit is required: replacing the fixed
“bottom-up adaptive filter” [6] by a tunable filter is sufficient to
make the internal competition between the categories context-
sensitive. A new tuning parameter need not be invented, as
the readily available vigilance parameter can control both
vigilance and attentional tuning. The resulting model is very
simple and capable of multiple categorization for discrete and
continuous degrees of generality. Returning to the example of
Fig. 1, the modified fuzzy ART can learn the flowers and tulips
categories in either order. Once these categories are learned,
the network can choose either one in response to an input de-
scribing tulips, its decision being based on the value of the vig-
ilance parameter. The self-stabilization property is preserved
for arbitrary orderings of arbitrarily chosen vigilance levels.
The model is applicable to tuning criteria other than generality,
like shape, orientation, intensity, and so on. This approach
is different from, and yet compatible with, models proposed
for hierarchical categorization, a challenging problem where
part/whole relationships are formed between categories having
different levels of generality. A review of ART-based models
for hierarchical clustering can be found in [7].

The fuzzy ART algorithm, input normalization, and order of
search through the categories are reviewed in the next section.
Since extensive literature exists on fuzzy ART and other ART
models [3], [4], [6], [8]–[11], only the algorithmic aspects per-
tinent to multiple categorization are reviewed. In Section III,
a “tunable” choice function is introduced, and the resulting
order of search through the categories is compared to that

of the original choice function. In Section IV, learning with
variable vigilance is examined and shown not to prevent self-
stabilization of the weights for an arbitrary sequence of inputs.
Computer simulation results are presented in Section V.

II. FUZZY ART

To avoid a category proliferation problem that could other-
wise occur [12], Carpenteret al. recommend input normaliza-
tion by a procedure called complement coding [3]. Letbe an

-dimensional vector where
The complement coded input is obtained as

(1)

Assign to each category a vector
of adaptive weights. Each category

is initially uncommitted, and its weights are initialized to
one. The functionality of Fuzzy ART may be described as
a three-step algorithm [3].

Step 1) Category Choice:Upon presentation of an input,
a choice function is computed for each category

(2)

The norm operator is defined as , the
symbol denotes the fuzzy AND operator, that is,

and is a user-defined
parameter, The category for which the choice
function is maximal, that is,
is chosen for the vigilance test.

Step 2) Vigilance Test:The similarity between and is
compared to a parameter called vigilance, , in
the following test:

(3)

If the test is passed, then resonance occurs [Step 3)] and
learning takes place. If the test is failed, then mismatch reset
occurs: the value of is set to 1 for the duration of the
current input presentation, another category is chosen in Step
1), and the vigilance test is repeated. Categories are searched,
that is, chosen and then tested, until one that meets (3) is
found. This category is said to beselectedfor It is either
already committed or uncommitted, in which case it becomes
committed during resonance.

Step 3: Resonance:Resonance makes reference to the in-
ternal dynamics of the neural network as it pays attention to
the vector During resonance, the weight vector
of the selected category is updated according to the equation

(4)

where is a learning rate parameter, What
is learned is not the input itself, but rather an attended
weight vector fuzzy ART thus learns prototypes,
rather than exemplars. The special case is called fast
learning and is assumed throughout this work. Once resonance
is finished, a new input may be presented, and the three steps
repeated.
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Fig. 2. Two-dimensional geometric interpretation of a category prototype
wwwj = (0:2; 0:4; 0:5; 0:2) as a rectangleRj with cornersuuuj = (0:2;0:4)
andvvvj = (0:5;0:8): The norm ofwwwj ; and the size ofRj , are equal to 1.3,
and 0.7, respectively. The input vectoraaa = (0:8;0:3) is shown lying outside
Rj : The city-block distance,dj , from Rj to aaa is equal to 0.4.

Each weight vector may be written in the form

(5)

where and are -dimensional vectors corresponding
to the two opposite corners of a hyperrectangle A two-
dimensional example is shown in Fig. 2.

The sizeof is defined by [3]

if is committed
if is uncommitted.

(6)

For brevity, we refer to as the size of category This
size is related to the norm of the weight vector by

(7)

Note that a large category has a short weight vector and vice
versa.

With fast learning, (4) reduces to

(8)

and the corners of are updated by

(9)

where denotes the fuzzy OR operator, that is,
When a committed cate-

gory is selected, expands to the minimum hyperrectangle
containing both and the input If lies inside of , then

is unchanged. Hence, once a categoryis committed, the
size of its hyperrectangle can only grow or remain the same.
The maximum size allowed is determined by the vigilance test,
which can be written in the form [3]

(10)

Setting the vigilance close to one yields only small hyper-

rectangles, whereas setting it close to zero allows both small
and large sizes.

The order in which categories are searched is uniquely
specified by the choice function (2). For this work it is
convenient to rewrite it as follows:

(11)

where

(12)

denotes Kosko’s fuzzy Hamming distance, that is,
[13]. (Note that (12) defines distance between

hyperrectangles, whereas in [4] distance is defined between
points). If the input vector lies outside the hyperrectangle

then is equivalent to the city-block distance between
and the closest edge or corner of ; if lies inside ,

then takes the value zero; and if is uncommitted, then
takes the value An example where lies outside

is shown in Fig. 2.
The distance between and plays an important role in

the fuzzy ART dynamics. Suppose Then category
is said to be asubset choicefor When a subset choice is
selected, its weight vector is unchanged during resonance since
the prototype is nothing but the weight vector itself, that is,

; in this case, previous knowledge is conserved.
Next suppose Then when category is selected,
the weights necessarily change during resonance because the
prototype learned, , is different from It can easily
be verified that the value of the choice function,, is thereby
increased, and so is the likelihood of choosing the same
category if is presented again [3]. Uncommitted categories
are a special case where , , , and

When an uncommitted category
is chosen, the vigilance criterion is necessarily met, thereby
ending the search through the categories. Hence the value
defines a threshold below which no committed category choice
for is searched. In other words, a committed category choice

for can be searched only if it satisfies

(13)

It is apparent from (11) that the order in which categories
are searched is fixed and independent of the vigilance level
Categories of identical size are searched in increasing order
of their distance from , that is, closest first and farthest last,
while categories that are equally distant fromare searched in
increasing order of size, that is, smallest first and largest last.
In the particular case where the weights are not changing,

for all the selected categories. As pointed out in [4],
Fuzzy ART then systematically chooses the smallest subset
choice for the current input.
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III. T UNABLE CATEGORY RECALL

A. A Tunable Choice Function

After weights have stabilized over an entire input set, the
choice function (2) ensures that the selected category is always
the smallest subset choice for the current input. In this section,
we explore the selection of other subset choices by replacing
(2) with a choice function that is tunable. Note that this choice
function is different from those examined by Carpenter and
Gjaja [14], and by Blumeet al. [15].

Let us denote by a parameter equal to the desired category
size This parameter specifies whether the
recalled category should be general, or rather specific, that
is, correspond to a large, or rather a small hyperrectangle.
In order to tune the attentional subsystem of fuzzy ART to
categories of size close to, we seek a choice function that
fulfills many requirements, such as the following.

1) Subset choices must be searched in increasing order of
the absolute difference between their size and.

2) Categories at a distance from the input must be
searched in increasing order of the absolute difference
between their size and .

3) Categories of identical size must be searched in
increasing order of their distance from the input, that
is, closest first and farthest last.

4) Subset choices of the desired sizemust meet the
vigilance criterion.

5) Learning must increase the value of the choice function
for the selected category.

The first two requirements define the tuning property, the
next two stem from the fuzzy ART dynamics, and the last one
is essential for stability, as will be shown in Section IV. The
choice function (2) meets all five requirements when ,
that is, when the desired size is fixed and equal to zero.

One tunable choice function that meets the above require-
ments is convex with its maximum at size Changing the
value of the tuning parameter translates the maximum with
respect to category size, allowing activation of more than one
category per input. This choice function is best introduced
geometrically. Let us write a first term,

to promote categories with hyperrectangles in the vicinity of
input vector This term is independent of category size. Next,
let us write a second term,

to promote categories having a postresonance size close to,
that is, a preresonance size close to It is a quadratic
expression with respect to size , reaching a maximum of
zero at Adding these closeness and sizing
terms together yields

(14)

The tunable choice function (14) meets all five aforementioned
requirements, provided that , as is shown
in Appendix A.

The choice function (14) may be rewritten in conventional
terms

(15)

Thus is equal to the product of two factors: one is a function
of a similarity term, , and the norm of the weight vector,

; the other is a function of the norm of the complement
of the weight vector,

The desired size can conveniently be defined as a function
of , the vigilance parameter, as long as the constraint

is satisfied. In particular, one may set

(16)

where is a user-defined constant such that Then a
single parameter controls both vigilance and attentional tuning.

Using (14), categories of identical size are searched closest
first and farthest last, like with the choice function (12).
However, categories at a distancefrom the input are now
searched in accordance with an inverted parabola that reaches
a maximum of at size If , then the peak
of the parabola corresponds to the largest size that can meet
the vigilance criterion, In this case,
categories that meet the criterion are searched in decreasing
order of size, that is, largest first and smallest last, rather than
in increasing order of size as with the choice function (2).
Moreover, whenever the weights are not changing, the selected
category becomes the largest subset choice whose size does
not exceed , rather than the smallest subset choice
irrespective of

If the vigilance level is changed, for example from
to , then the choice function reaches its maximum at

instead of , and the attentional
subsystem of fuzzy ART becomes tuned to larger categories.
Therefore changing allows more than one category to be
activated for a same input. In fact, it can be shown that every
committed category can be recalled for some prior input if
is properly set.

B. Stable Category Learning with Fixed Vigilance

An equilibrium state is considered to be reached when, upon
presentation of a set of inputs, the network weights are not
changing [16]. This is equivalent to saying that learning has
stabilized. Generally, there can be many possible equilibrium
states for an input set; which one is reached depends on the
order of presentation of the inputs.

Of theoretical significance is a definition of stability that
requires reaching an equilibrium state after just a single
presentation of the input set, that is, a single learning trial.
Carpenteret al. have shown that the original fuzzy ART
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algorithm is stable in this sense if and only if the inputs are
normalized, (fast learning), and [3]. The limit

is called theconservative limit, and sets fuzzy ART in
its most stable operating state.

The astute reader may have noticed that, unlike the original
choice function (2), the choice function (14) does not contain a
choice parameter This parameter was omitted earlier for the
sake of clarity. But without it, a conservative limit cannot be
attained. A tunable choice function with a choice parameter
is given by

(17)

where

(18)

and

(19)

As shown in a lemma in Appendix B, the lower bound on
guarantees that all the subset choices meeting the vigilance

criterion remain above the threshold defined by uncommitted
categories, even when is high and is low.

Using (17), the smaller is, the flatter the parabolas are. At
the conservative limit, the second term vanishes, placing subset
choices on a straight horizontal line above all other choices.
The larger is, the narrower the subset choice parabola is,
yielding a search that is more selective in terms of category
size. Note that in the particular case where , (17) simply
reduces to (14).

Like in (2), choosing close to zero predisposes fuzzy
ART to stability rather than plasticity, and the limit

guarantees that the subset choices for an inputtake
precedence over all other categories.

Lemma 1 (Learning on a Single Trial):Assume fuzzy
ART with the tunable choice function (17), ,
and An equilibrium state is reached after a single
presentation of a list of arbitrarily chosen analog inputs.

A proof is given in Appendix C.

IV. M ULTIPLE CATEGORIZATION

A. Discrimination and Generalization

In the tunable choice function (14), acts as a dual-
purpose vigilance-tuning parameter. It simultaneously limits
the category growth, and tunes the attentional subsystem to
categories of a certain size. To tune the network,must be
variable, that is, free to change between input presentations,
without resetting the network weights. (The idea of varying
vigilance is not new. For instance, empirical results on the
use of an adaptive vigilance strategy in the vigilant net are
presented by Burke [17].) In this section we analyze the effect
of a variable vigilance on the category learning process and
on the self-stabilization of fuzzy ART. Self-stabilization with
fixed vigilance has been documented at length [3], [6], [11].

Suppose broad categories are formed by a fuzzy ART
network during a learning trial held at a low vigilance level

If another trial is held at a higher vigilance level using
as the initial weights those obtained at the low vigilance, then
more specific categories will be learned. Hence, increasing the
value of allows formation of new smaller categories inside
of large ones that are already known. This property can be
stated in a lemma.

Lemma 2 (Discrimination):After fuzzy ART with the
choice function (2) or (17) has reached an equilibrium state
at , it may learn more at a higher vigilance level ,

, from the same inputs.
Proof: By (10) subset choices activated at may

fail the vigilance test at Uncommitted categories and
nonsubset choices may thus be selected and trigger additional
learning.

Decreasing the value of should yield generalization, that
is, the formation of broader categories in addition to specific
ones that already exist. The next lemma, whose proof is
given in Appendix D, states that fuzzy ART is not capable
of generalization with the choice function (2), but that it is
with (17).

Lemma 3 (Generalization):Assume fuzzy ART has
reached an equilibrium state at With the choice function
(2), it remains in the same equilibrium state as long as

, whereas with the choice function (17), it can learn
more from the same inputs when

The tunable choice function (17) allows fuzzy ART to learn
multiple categorizations as is increased or decreased, and
to access each categorization through its own vigilance level.
Returning to the example of Fig. 1, it can thus learn the
tulips and flowers categories in either order, and recall either
category in response to an input describing tulips.

B. Stable Category Learning with Variable Vigilance

It is imperative to determine whether the proposed model
self-stabilizes across several vigilance levels, and if so,
whether the vigilance levels can be arbitrarily chosen. Let
us first examine the effect of alternating vigilance between
two levels, and After learning has stabilized once at

and then once at , , additional learning may
still take place upon returning to Indeed categories that
were previously undersized at may be selected during
the trial held at The hyperrectangles of these categories
may grow, making them more attractive for selection and
further growth back at (By contrast, the original fuzzy
ART would remain in equilibrium from to by lack of
generalization.) This leads to a lemma, whose proof is given
in Appendix E.

Lemma 4: Assume fuzzy ART with the choice function
(17), and let By holding trials alternately
at and at , the number of categories satisfying

(20)

can increase or remain the same, but not decrease.
Now let us defineself-stabilizationas reaching an equilib-

rium state on a finite number of learning trials for any finite
set of inputs. This prevents the creation of an infinite number
of categories, or perpetual category updates, upon repeated
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presentations of some inputs. This definition has been used
for analyzing fuzzy ART’s stability for a fixed vigilance [3],
[11], [12], [18].

According to this definition, fuzzy ART is stable for a
variable vigilance, provided the choice function meets the
fifth requirement of Section III (a mild condition). This can
be stated in a theorem, whose proof is given in Appendix F.

Theorem 1 (Stable Multiple Categorization):Assume fuzzy
ART with (fast learning), and a choice function such
that learning necessarily increases the choice function value
of the selected category. An equilibrium state is reached on
a finite number of learning trials, in response to arbitrary
orderings of arbitrarily chosen analog inputs, whenvaries
from trial to trial with values arbitrarily taken from a finite
set

Corollary 1: Fuzzy ART with the choice function (17) has
the stable multiple categorization property for any value of
the parameter ,

Proof: By virtue of (17), learning increases the value of
the choice function of the selected category, that is, if ,
then Indeed

(21)

The stable multiple categorization property implies that
there exists no finite list of inputs and vigilance levels that
could trigger the creation of an infinite number of categories,
or produce endless category updates. This self-stabilization is
essential in many critical applications. Vigilance can thus be
increased or decreased in any number of steps, which can be of
any size. It can also be chosen at random before each learning
trial or each input presentation. Vigilance levels that are close
together will share many categories, whereas vigilance levels
that are far apart will share few, if any, categories.

C. Abstraction Criterion

In some applications it may be useful to reinforce gener-
alization by completing the vigilance test with anabstraction
test. Indeed the generalization provided by the choice function
(17) is “gentle” in comparison with the discrimination em-
bodied in the vigilance test: small subset choices can always
be selected for lack of better nonsubset choices, whereas the
vigilance test sets a hard limit to category size even if this
implies creating new categories. The object of an abstraction
test would mirror that of the vigilance test, and aim at rejecting
categories that are small and close to the input, while accepting
ones that are larger and more distant. One possible abstraction
test is given by

(22)

or

(23)

where now denotes anabstractionparameter,
Setting close to yields large hyperrectangles

only, whereas setting it close to one allows both small and
large sizes. It is imperative for stability that newly committed
categories pass the abstraction test. This can be achieved
by modifying the learning mechanism so that categories are
committed with a minimum size equal to

V. SIMULATION RESULTS

A. Flowers Data

First we illustrate the multiple categorization faculty by
pursuing the example of Fig. 1. Two-dimensional fictitious
data belonging to three classes labeled “tulips,” “roses,” and
“sticks,” are presented to a fuzzy ART neural network with
the choice function (14), while the vigilance level is varied
between 0.9, 0.75, and 0.5. Labels are of course withheld from
the network, and the network weights are not reset on changes
of the vigilance level.

A geometrical interpretation of the results of this simulation
is shown in Fig. 3. Once learning has stabilized across all the
vigilance levels, a total of five categories can be recalled by the
network: three correspond to tulips, roses and sticks, a fourth
corresponds to “flowers,” that is, a combination of tulips and
roses, and a fifth corresponds to all the inputs. The category
selected for a given input depends on the current vigilance
level. For example, in response to an input describing tulips,
when the network selects the tulips category; when

the same network selects the flowers category; and
when it selects the category in which all the patterns
are lumped together. The hyperrectangles selected when the
vigilance is equal to 0.9, 0.75, and 0.5 are shown in Fig. 3(a),
(b), and (c), respectively.

B. Binary Patterns

Fig. 4 shows the results of a computer simulation in which
binary patterns from [6] are presented to two fuzzy ART neural
networks. The left part of the figure shows four patterns labeled
A, B, C, and D being repeatedly presented as time elapses
from the top down. The vigilance level used is shown next
to each pattern. From trial to trial, low vigilance
alternates with high vigilance The middle part
of the figure shows the categories learned and recalled by a
fuzzy ART neural network using the original choice function
(2) with A number appearing under a category
indicates that this category is searched, and the letters “RES”
indicate resonance. Last, the right part of the figure shows
the categories learned and recalled when the tunable choice
function (14) is used. Throughout the simulation both networks
are set to fast learning

In this example, the two networks learn the same categories.
After the first trial, they have learned Category 1, which
corresponds to A,B,C,D After the second trial, they have
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(a)

(b)

(c)

Fig. 3. A fuzzy ART neural network modified with the choice function (14)
has learned five categories while the vigilance level was varied between 0.9,
0.75, and 0.5 without resetting the network weights. After stabilization, the
categories recalled are shown for the three vigilance levels, in (a), (b), and
(c), respectively. Rectangles and category labels are provided for convenience
only. (a) � = 0:9 (b) � = 0:75 (c) � = 0:5

learned Categories 2 and 3, which correspond toA,B and
C,D respectively.
Having learned the same three categories, the two networks

recall them differently. In the case of the original choice
function, whether or , the same categories
are recalled, namely Categories 2 and 3. Category 1 does not
win anymore, even at low vigilance It has been
eclipsed by the other two.

By contrast, the categories recalled by the tunable network
change according to vigilance. When , Categories 2
and 3 are recalled, whereas when , Category 1 is
recalled. Two distinct categorizations are thus activated by a
change of vigilance.

VI. CONCLUSION

The choice function of fuzzy ART has been modified to
include a tuning parameter under external control that can
bias the internal competition between categories in favor of
categories of a desired size. This attentional tuning mechanism
allows recalling for a same input different categories under dif-
ferent circumstances, even when no additional learning takes
place. This behavior cannot be duplicated by the conventional
choice function, in which the order of search through the
categories is fixed.

The modified choice function does not interfere with the
orienting subsystem, the vigilance test, nor the learning of the
fuzzy ART model. A single parameter can be used both
for vigilance and for attentional tuning. The resulting network
can generalize and discriminate, and has been shown to reach
an equilibrium state after a finite number of learning trials for
arbitrary orderings of arbitrarily chosen values of the vigilance
parameter. This work illustrates the flexibility of the ART
framework, and its potential for a wide range of applications.

APPENDIX A

In this appendix, we present proofs that the choice function
(14) meets the five requirements of Section III.

Lemma A.1: If and ,
then

Proof: If and , then

(24)

for all
Lemma A.2: If and

, then
Proof: If and

, then

i
2 (25)

and for all
Lemma A.3: If and , then
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Fig. 4. Binary pattern learning example, showing the categories learned by fuzzy ART neural networks with the original and tunable choice functions side
by side. Time elapses from the top down. The two networks simultaneously learn the same three categories, but recall them differently afterwards.

Proof: This pertains only to committed categories. (In-
deed if a single one ofor is uncommitted, then ,
whereas if both and are uncommitted, then ) The
partial derivative of (14) with respect to distance is

(26)

Since , and for committed categories
, we obtain

if is committed (27)

Lemma A.4: If and , then (10) is met.
Proof: If , then , and by

virtue of (10), the choice function (14) meets the requirement

if the desired size satisfies

(28)

Lemma A.5: If then
Proof: If is not a subset choice, then

and it can be verified that

(29)

holds true.
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APPENDIX B

A lower-bound on the user-defined constantis derived.
Lemma B.1: If , and , then

for ,
, and

Proof: Since the subset choice parabola reaches its min-
imum at size , we must find that
satisfies , that is

(30)

and thus

(31)

To minimize the right hand term, we take the partial derivative
with respect to

(32)

and find that it is monotonically decreasing if which
is the case. At the limit , (31) becomes

(33)

Now taking the partial derivative of the right hand term with
respect to

(34)

we find that it is monotonically decreasing if , which
is again the case. To maximize, we set and (33)
reduces to

(35)

which can be written

(36)

The real root of this third-degree polynomial is equal to
, and corresponds to the minimum value ofguar-

anteeing that all the subset choices that can pass the vigilance
test remain above threshold.

APPENDIX C

We prove Lemma 1, which states that under certain condi-
tions, fuzzy ART with the tunable choice function (17) reaches
an equilibrium state after a single presentation of an arbitrary
list of analog inputs. The proof is based on another lemma
and a corollary.

Lemma C.1: Assume fuzzy ART with the tunable choice
function (17), , , and fixed Once
a category has been assigned to an input, it can always be
searched, and pass the vigilance test for this input. This holds
true for any value of the parameter,

Proof: First, by (8) and the subset choice definition, once
a category has coded an input, this category is and remains
a subset choice for Second, as a consequence of submitting
all hyperrectangle growths to the vigilance test (10), subset
choices continue to pass this test as long asis held constant.
Third, by Lemma B.1, the choice function of subset choices
remains above the threshold corresponding to uncommitted
categories.

Corollary C.1: Assume the hypotheses of Lemma C.1. The
number of categories committed is less than, or equal to the
number of distinct inputs.

Proof: After one learning trial there is at least one subset
choice for each input. By Lemma C.1 this subset choice can
be searched , and can pass the vigilance test if the
input is presented again. Therefore no uncommited category
can be searched, nor committed.

After one learning trial, there is at least one subset choice
for every input. By Lemma C.1, all subset choices can be
searched and pass the vigilance test, and at the conservative
limit, (17) guarantees that these subset choices take precedence
over all other categories. Consequently, in subsequent trials,
all inputs activate subset choices, and no additional learning
occurs. An equilibrium state is thus reached after a single trial.
Note, however, that the final category assignment may differ
from that obtained during this first trial.

APPENDIX D

Lemma 3 (Generalization):Assume fuzzy ART has
reached an equilibrium state at With the choice function
(2), it remains in the same equilibrium state as long as

, whereas with the choice function (17), it can learn
more from the same inputs when

Proof: First we prove that with (2) the categorization
is fixed. Assume an equilibrium state at When ,
subset choices activated at necessarily pass the vigilance
test and therefore no new category can be committed. Now
suppose that when , could activate a category
different from that activated at , say , and that learning
occurs, meaning This implies But since the
choice function is independent of, it is , instead of , that
would have been chosen forat The only alternative is if

had failed the vigilance test at , which would imply

(37)

But then

(38)
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and , instead of , would be chosen for at ,
contradicting our supposition. Therefore for all
activates , and the network remains in the same equilibrium
state.

An example will suffice to prove that with (17) the catego-
rization is mutable. Assume that and

In response to , a first category is
committed, with resulting weight vector In
response to Category 1 is chosen, passes the
vigilance test

and its weight vector becomes In response to
Category 1 is chosen, and fails the vigilance

test

A second category is committed, with resulting weight vector
At this point learning has stabilized at ,

and the inputs , , and activate the categories 1, 1, and
2, respectively. Next decrease the vigilance level to 0.8. In
response to , Category 1 is chosen over Category 2. Indeed

and Then Category 1 passes the vigilance
test

and its weight vector becomes So fuzzy ART
with the choice function (17) can generalize.

APPENDIX E

Lemma 4: Assume fuzzy ART with the choice function
(17), and let By holding trials alternately
at and at , the number of categories satisfying

(39)

can increase or remain the same, but never decrease.
Proof: At , a category that satisfies (39) fails the

vigilance test, and is therefore conserved. At, the same
category passes the test, but cannot grow so large as to fail
it afterwards. Hence the number of categories satisfying (39)
cannot decrease. To show that this number can increase, an
example will suffice. Assume that , , ,
and First assume In response to

, , and two categories
are committed with resulting weight vectors
and The inputs , , and activate the
categories 1, 1, and 2, respectively. Only Category 1 satisfies

(39). At , two more categories are committed with resulting
weight vectors and At
this point , , and activate the categories 3, 4, and
2, respectively. Back at , and activate Category 1,
while activates Category 4 with resulting weight vector

As a result, two of the categories, 1 and 4,
satisfy (39).

APPENDIX F

Using a simple numerical argument, we prove Theorem 1,
which states that fuzzy ART with a choice function that meets
the fifth requirement of Section III reaches an equilibrium state
in finite time for an arbitrary list of inputs, and for an arbitrary
list of vigilance levels. Assume an input set containing a finite
number of distinct analog inputs, that have
been complement coded. The proof is based on three lemmas.

Lemma F.1: If , then there are or less possible
values for the weight vectors.

Proof: When in fast learning, the weight update equa-
tion reduces to (8). Since the fuzzy AND operator is both
commutative and associative, the order of the assignments of
a category to the inputs has no effect on the end value of
In addition, since , repeated assignments ofto an
input leaves unchanged. The value of is thus uniquely
determined by the assignment or nonassignment ofto the
inputs. From set theory, there are possible subset choices
in a -element space, and therefore possible values for

Lemma F.2: Assume fuzzy ART with the tunable choice
function (17). All committed categories have different weight
vector values.

Proof: If it were otherwise, then when a category
would be assigned to an input, the corresponding weight
vector could take the value of another weight vector,

. In other words,

(40)

with . Since the choice function is such that if ,
then we have . Therefore can
only be activated if failed the vigilance test at the current
vigilance level. But then

(41)

and category also fails the test. Therefore the value of the
weight vector of each committed category is unique.

Lemmas F.1 and F.2 together guarantee that no more than
categories can be committed, regardless of the

number of times the inputs are presented, and regardless of
the vigilance levels. One condition to stability is thus met.

Lemma F.3: Assume Fuzzy ART with the tunable choice
function (17). Equilibrium is reached after or
less weight vector changes.

Proof: By virtue of (8), weight vectors cannot cycle
through previous values. We have shown in Lemma F.2 that
all committed categories have different weight vector values,
and in Lemma F.1 that there are no more than possible
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values, including one for uncommitted categories. Therefore
, the weight vector of the first category to be committed,

cannot undergo more than changes; more than
changes, more than changes, and so

on. Proceeding inductively, we obtain that the total number
of weight vector changes for all possible categories cannot
exceed

By definition, every learning trial prior to equilibrium must
change at least one weight vector. Since by Lemma F.3
equilibrium is reached after or less weight
vector changes, it is reached after or less trials,
and thus in finite time. Note that this loose upper bound is
independent of the vigilance levels used.
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