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Abstract—The internal competition between categories in the

adaptive resonance theory (ART) neural model can be biased
by replacing the original choice function by one that contains
an attentional tuning parameter under external control. For the neural » flowers
same input but different values of the attentional tuning param- network
eter, the network can learn and recall different categories with
different degrees of generality, thus permitting the coexistence tuning
of both general and specific categorizations of the same set
of data. Any number of these categorizations can be learned T
within one and the same network by virtue of generalization general
and discrimination properties. A simple model in which the @
attentional tuning parameter and the vigilance parameter of ART
are linked together is described. The self-stabilization property is
shown to be preserved for an arbitrary sequence of analog inputs,
and for arbitrary orderings of arbitrarily chosen vigilance levels.
) . neural tulips
Index Terms—Adaptive resonance theory (ART), categoriza- network ">
tion, choice function, discrimination, generalization, neural net-
work, stability, unsupervised. tuning
I. INTRODUCTION -
specific
HE faculty of an unsupervised neural network to learn (b)

intersecting categories, and to respond by more than one ) ) ) ) -
Fig. 1. A simple illustration of the multiple categorization faculty. A neural

category to a familiar input, is examined. Such a facultyaork has previously learned categories corresponding to “flowers” and
is necessary for learning and recalling categories exhibitirglips.” It can recall either category in response to an input describing tulips.

various degrees of generality, for example, and for the codg) Tuning parameter set to “general.” (b) Tuning parameter set to “specific.”
istence of general and specific categories on an equal footing.
By definition, neural networks based on the premise that #ila network can output multiple categories, the mapping can
categories are mutually exclusive do not have this faculty. be a many-to-many relation, that is, categories can intersect
A simple illustration of the desired faculty is shown inand cover each other, and multiple categorization becomes
Fig. 1. In this example, a hypothetical neural network hgsbssible. Alternatively, a neural network having a single output
previously learned categories corresponding to “flowers” an@n be “tuned” to learn multiple categorizations and recall
“tulips.” It can be tuned by means of a parameter controllingiem in succession, as in Fig. 1.
whether the recalled category should be general, or rather spemn this paper, we examine multiple categorization in the
cific, that is, correspond to a broad, or rather a narrow portiedntext of adaptive resonance theory (ART), a theory of human
of the input space. In response to an input describing tulipssgnitive information processing introduced by Grossberg,
when the tuning parameter is set to “general,” the netwofkat addresses the stability-plasticity dilemma [1], [2]. More
chooses the flowers category; and when the tuning parametgiyiscisely, we use a self-organizing neural model called fuzzy
set to “specific,” the same network chooses the tulips categoRRT py Carpenteret al. [3]. This neural network accepts
Let us callcategorizationthe mapping that associates Catanalog inputs one at a time and develops a categorization.
egories with each input in a set. If a neural network casamjliar inputs activate their category, whereas unfamiliar

output only one category per input, the mapping is & many;, s trigger either adaptive learning by an existing category,
to-one relation, and all the categories are mutually exclusive. .ommitment of a new category.
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ART always responds the same way to a familiar inputf the original choice function. In Section IV, learning with
it recalls the smallest hyperrectangle containing this inpuériable vigilance is examined and shown not to prevent self-
[4]. Hyperrectangle overlaps have been argued to be stabilization of the weights for an arbitrary sequence of inputs.
inconvenience if categories are mutually exclusive [5]. OW@omputer simulation results are presented in Section V.
stance here is that these overlaps can be useful, and we
describe a model that exploits them for multiple categorization.

In order to learn intersecting and overlapping categories, Il. Fuzzy ART

a neural network must be capable of repressing previouslyry, ayoid a category proliferation problem that could other-
known categories while it forms new ones. In other word§yise occur [12], Carpentest al. recommend input normaliza-

it must be able to make temporary abstraction of previoys, by a procedure called complement coding [3]. kéte an
knowledge. In the context of categories with various degregs_gimensional vectofay, az, - -, ay ), where0 < a; < 1.

of generality, this can be expressed as two complementgfye complement coded inpitis obtained as
properties: if a neural network with previous knowledge of

specific categories can learn new, broader ones, then we shall * =~ (a1, a9, an, 1 —ay, 1 —ag,- -, 1 —an)

say that it has theeneralizationproperty; if it can do the =(a,a). 1)
reverse, then it has théiscriminationproperty. Returning to Assign to each category j a vector w; _
the neural network of Fig. 1, generalization would allow th@ujl’wﬂ’...’wﬂM) of adaptive weights Each category

learning of the tulips category first, and the flowers categoy initially uncommitted, and its weights are initialized to
next, whereas discrimination would allow the reverse. lgne. The functionality of Fuzzy ART may be described as
the case of fuzzy ART, increasing the value of a network three-step algorithm [3].

parameter calledvigilance allows formation of new, more  Step 1) Category ChoicetUpon presentation of an inpiit

specific categories intersecting broad ones that are alregfyhoice function; is computed for each categoyy
known. The network is thus capable of discrimination. I A w;|
_ J

However, reducing the same parameter value does not yield T; = (2)

generalization. This is due to the predilection of fuzzy ART

for the smallest hyperrectangle containing the input. The norm operatot - | is defined aslz| = 272 |x;], the
In this paper, it is shown that a simple modification gran@ymbol A denotes the fuzzy AND operator, that isBA y =

to fuzzy ART both the generalization property and the abilitgnin(z1,y1), - - -, min(zan, y2nr)), and v is a user-defined

to tune its attentional subsystem to categories of a desife@fameter,c > 0. The category./ for which the choice

degree of generality. What is remarkable is that no additiorfiinction is maximal, that is/; = max{7;,j = 1,2,3,---},

structural or functional unit is required: replacing the fixeép chosen for the vigilance test.

“bottom-up adaptive filter” [6] by a tunable filter is sufficientto Step 2) Vigilance TestThe similarity betweemw; andI is

make the internal competition between the categories contes@mpared to a parameter called vigilance 0 < p < 1, in

sensitive. A new tuning parameter need not be invented, 8¢ following test:

the readily available vigilance parameter can control both [ Awyl S 3)

vigilance and attentional tuning. The resulting model is very I~ p-

simple and capable of muItipIe_ categoriz:?\tion for discrete apdthe test is passed, then resonance occurs [Step 3)] and
continuous degrees of generality. Returning to the example|girning takes place. If the test is failed, then mismatch reset
Fig. 1, the modified fuzzy ART can learn the flowers and tulip§ccurs: the value off; is set to—1 for the duration of the
categories in either order. Once these categories are leamgflyent input presentation, another category is chosen in Step
the network can choose either one in response to an input d¢-and the vigilance test is repeated. Categories are searched,
scribing tulips, its decision being based on the value of the Vighat is, chosen and then tested, until one that meets @) is
ilance parameter. The self-stabilization property is preservgglind. This category is said to kselectedfor I. It is either

for arbitrary orderings of arbitrarily chosen vigilance levelsgiready committed or uncommitted, in which case it becomes
The model is applicable to tuning criteria other than generalitygmmitted during resonance.

like shape, orientation, intensity, and so on. This approachstep 3: ResonanceResonance makes reference to the in-
is different from, and yet compatible with, models proposeg@rnal dynamics of the neural network as it pays attention to
for hierarchical categorization, a challenging problem whetge vector(I A w). During resonance, the weight vectoy

part/whole relationships are formed between categories havisithe selected category is updated according to the equation
different levels of generality. A review of ART-based models (new) (old) (old)
for hierarchical clustering can be found in [7]. wy = Aw; ) A (1= Blwy 4)

The fuzzy ART algorithm, input normalization, and order ofvhere /3 is a learning rate parameted, < 5 < 1. What
search through the categories are reviewed in the next sectisnlearned is not the inpuf itself, but rather an attended
Since extensive literature exists on fuzzy ART and other ARWeight vector( AwS”ld)): fuzzy ART thus learns prototypes,
models [3], [4], [6], [8]-[11], only the algorithmic aspects perfather than exemplars. The special cgse- 1 is called fast
tinent to multiple categorization are reviewed. In Section lllearning and is assumed throughout this work. Once resonance
a “tunable” choice function is introduced, and the resultinig finished, a new input may be presented, and the three steps

order of search through the categories is compared to thepeated.

o+ |w;|
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Fig. 2. Two-dimensional geometric interpretation of a category prototy

w; = (0.2,0.4,0.5,0.2) as a rectangleR; with cornersu; = (0.2,0.4)
andv; = (0.5,0.8). The norm ofw;, and the size of?;, are equal to 1.3,
and 0.7, respectively. The input veciwr= (0.8,0.3) is shown lying outside
R;. The city-block distanced;, from R; to a is equal to 0.4.

Each weight vectow; may be written in the form

()

wj = (uj,v5)
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rectangles, whereas setting it close to zero allows both small
and large sizes.

The order in which categories are searched is uniquely
specified by the choice function (2). For this work it is
convenient to rewrite it as follows:

_ HAw|
Tt fwl
M~ |Ry| (| — [T Ay
Oé+M—|RJ|
_ M — || — |lw; — (I Awj)|
Oé+M—|RJ|
M — |R;| — d;
=— - 11
CY+M— |RJ| ( )
where
d; Ed(HJj,I/\HIj) (12)

denotes Kosko'’s fuzzy Hamming distance, thatdg, y) =
PE2M |z, — v;| [13]. (Note that (12) defines distance between
hyperrectangles, whereas in [4] distance is defined between
points). If the input vector lies outside the hyperrectangle
R;, thend; is equivalent to the city-block distance between
a and the closest edge or corner Bf; if a lies inside R;,

then d; takes the value zero; and jf is uncommitted, then

d; takes the valuel/. An example where lies outsideR;

is shown in Fig. 2.

wherew; andv; are M-dimensional vectors corresponding The distance betweefi; anda plays an important role in

to the two opposite corners of a hyperrectangle A two-
dimensional example is shown in Fig. 2.
The sizeof R; is defined by [3]

|R;| = { (6)

For brevity, we refer tgR;| as the size of category This
size is related to the norm of the weight vectar;| by

|Rj| = M — |wy].

lv; —w;|, if jis committed
—M, if 7 is uncommitted.

(7)

the fuzzy ART dynamics. Supposg = 0. Then category;

is said to be asubset choicdor I. When a subset choice is
selected, its weight vector is unchanged during resonance since
the prototype is nothing but the weight vector itself, that is,

I Nnwy =wy; in this case, previous knowledge is conserved.
Next supposed; > 0. Then when category is selected,

the weights necessarily change during resonance because the
prototype learned, Awy), is different fromw;. It can easily

be verified that the value of the choice functidry, is thereby
increased, and so is the likelihood of choosing the same

Note that a large category has a short weight vector and vicategory ifI is presented again [3]. Uncommitted categories

versa.
With fast learning, (4) reduces to

Snew) _ IAwSOId) (8)
and the corners oft; are updated by
new old
(new) =aAl 'u,E, )

vSner) —aV USOM) (9)

where v denotes the fuzzy OR operator, that isV y =

(max(z1,11), - -, max(xr, yar)). When a committed cate-

are a special case whefen w; = I, I # w;, d; = M, and

T;, =T, = M/(a + 2M). When an uncommitted category
is chosen, the vigilance criterion is necessarily met, thereby
ending the search through the categories. Hence the {&alue
defines a threshold below which no committed category choice
for I is searched. In other words, a committed category choice
4 for I can be searched only if it satisfies

M
T, > —.
7T a+2M
It is apparent from (11) that the order in which categories

(13)

gory is selectedRR; expands to the minimum hyperrectanglare searched is fixed and independent of the vigilance |evel

containing bothR; and the input. If a lies inside ofR;, then
Rj is unchanged. Hence, once a categpig committed, the

Categories of identical size are searched in increasing order
of their distance fromu, that is, closest first and farthest last,

size of its hyperrectangle can only grow or remain the samghile categories that are equally distant frarare searched in
The maximum size allowed is determined by the vigilance testcreasing order of size, that is, smallest first and largest last.

which can be written in the form [3]

IRP) < M(1 - p). (10)

In the particular case where the weights are not changing,
d; = 0 for all the selected categories. As pointed out in [4],
Fuzzy ART then systematically chooses the smallest subset

Setting the vigilance close to one yields only small hyper-choice for the current input.
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Ill. TUNABLE CATEGORY RECALL The choice function (14) may be rewritten in conventional
terms
A. A Tunable Choice Function

After weights have stabilized over an entire input set, the
choice function (2) ensures that the selected category is always

Ty =(M — dj)* = (IR;| = S+ d;)?
=M* - 2d;M +di — (|R;| - §)°

the smallest subset choice for the current input. In this section, —2d;(|R;| — 8) — d3

we explore the selection of other subset choices by replacing =(—|Rj| + S+ M —2d))(|R;| — S+ M)

(2) with a choice function that is tunable. Note that this choice —(2M — |R;| — d;) — (M — |R;|) + S)
- 7 J J

function is different from those examined by Carpenter and
Gjaja [14], and by Blumeet al. [15]. “(2M — (M — |Ry]) = S)

Let us denote by$ a parameter equal to the desired category = QU ANwj| — |w;| + S)(lwi| = 5). (15)
size 0 < § < M. This parameter specifies whether the ] ] ]
recalled category should be general, or rather specific, tH4USZ; is equal to the product of two factors: one is a function
is, correspond to a large, or rather a small hyperrectang @ Similarity term|IAw;|, and the norm of the weight vector,
In order to tune the attentional subsystem of fuzzy ART t@vsl; the other is a function of the norm of the complement

categories of size close 18, we seek a choice function thatOf the weight vector|wj]. . _ _
fulfills many requirements, such as the following. The desired siz& can conveniently be defined as a function

1) Subset choices must be searched in increasing orderj\)éfol’ the \/'lgllartyc?_ %ar?metir’ als long as the ctonstr«‘ilrf_t
the absolute difference between their size &hd (1 - p) is satisfied. In particular, one may se

2) Categories at a distancé from the input must be S=rM(1-p) (16)
searched in increasing order of the absolute difference
between their size an@lS — d). wherer is a user-defined constant such that x < 1. Thena

3) Categories of identical sizg| must be searched in single parameter controls both vigilance and attentional tuning.
increasing order of their distance from the input, that Using (14), categories of identical size are searched closest
is, closest first and farthest last. first and farthest last, like with the choice function (12).
4) Subset choices of the desired siemust meet the However, categories at a distanddrom the inputa are now
vigilance criterion. searched in accordance with an inverted parabola that reaches
5) Learning must increase the value of the choice functiepmaximum of M —d)? at size(S—d). If x = 1, then the peak
for the selected category. of the parabola corresponds to the largest size that can meet
The first two requirements define the tuning property, thbe vigilance criterion|R;| < M(1 — p) — d,. In this case,
next two stem from the fuzzy ART dynamics, and the last ort@tegories that meet the criterion are searched in decreasing
is essential for stability, as will be shown in Section IV. Therder of size, that is, largest first and smallest last, rather than
choice function (2) meets all five requirements wik®me 0, in increasing order of size as with the choice function (2).
that is, when the desired size is fixed and equal to zero. Moreover, whenever the weights are not changing, the selected
One tunable choice function that meets the above requitategory becomes the largest subset choice whose size does
ments is convex with its maximum at siz¢2 Changing the not exceedM (1 — p), rather than the smallest subset choice
value of the tuning parameter translates the maximum wihiespective ofp.
respect to category size, allowing activation of more than onelf the vigilance level is changed, for example frern= 0.85
category per input. This choice function is best introducdd p = 0.65, then the choice function reaches its maximum at
geometrically. Let us write a first term, |R;|/M = 0.35 instead ofl R;|/M = 0.15, and the attentional
9 subsystem of fuzzy ART becomes tuned to larger categories.
(M —dj) Therefore changing allows more than one category to be

to promote categories with hyperrectangles in the vicinity @ctivated for a same input. In fact, it can be shown that every
input vectora. This term is independent of category size. Nexgommitted category can be recalled for some prior inpyt if
let us write a second term, is properly set.

2
—(18[ =S +d)) B. Stable Category Learning with Fixed Vigilance

to promote categories having a postresonance size claSe to  An equilibrium state is considered to be reached when, upon
that is, a preresonance size closg$o- d;). It is a quadratic presentation of a set of inputs, the network weights are not
expression with respect to siz&;|, reaching a maximum of changing [16]. This is equivalent to saying that learning has
zero at|R;| = S — d;. Adding these closeness and sizingtabilized. Generally, there can be many possible equilibrium
terms together yields states for an input set; which one is reached depends on the
o N2 1 N2 order of presentation of the inputs.

Ty= (M =dy)” = (1] = S +4dy)" (14) Of theoretical significance is a definition of stability that
The tunable choice function (14) meets all five aforementioneelquires reaching an equilibrium state after just a single
requirements, provided that< S < M(1 — p), as is shown presentation of the input set, that is, a single learning trial.
in Appendix A. Carpenteret al. have shown that the original fuzzy ART
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algorithm is stable in this sense if and only if the inputs are™. If another trial is held at a higher vigilance leyet using
normalized,3 = 1 (fast learning), andv — 0 [3]. The limit as the initial weights those obtained at the low vigilance, then
«a — 0 is called theconservative limitand sets fuzzy ART in more specific categories will be learned. Hence, increasing the
its most stable operating state. value of p allows formation of new smaller categories inside
The astute reader may have noticed that, unlike the origiradl large ones that are already known. This property can be
choice function (2), the choice function (14) does not containséated in a lemma.
choice parametet. This parameter was omitted earlier for the Lemma 2 (Discrimination):After fuzzy ART with the
sake of clarity. But without it, a conservative limit cannot behoice function (2) or (17) has reached an equilibrium state
attained. A tunable choice function with a choice parametat p—, it may learn more at a higher vigilance levet,

is given by p~ < pT, from the same inputs.
oM Proof: By (10) subset choices activated at may
T, = (M — d;)? (|R;] =S +d;)* (17) fail the vigilance test atpt. Uncommitted categories and

M—5(1-a) nonsubset choices may thus be selected and trigger additional

where learning. [ |
Decreasing the value gf should yield generalization, that

S =rM(1-p) (18) is, the formation of broader categories in addition to specific
and ones that already exist. The next lemma, whose proof is
given in Appendix D, states that fuzzy ART is not capable
3611 <k <1 (19) of generalization with the choice function (2), but that it is
with (17).

As shown in a lemma in Appendix B, the lower bound on Lemma 3 (Generalization)Assume  fuzzy ART has

x Quarantees that all the subset choices meeting the Vigila%gched an equilibrium state at. With the choice function
criterion remain above the threshold defined by uncommittfg) it remains in the same equilibrium state as long as

categories, even whem is high andp is low. < pt, whereas with the choice function (17), it can learn

Using (17), the smallew is, the flatter the parabolas are. Alﬁ]Ore from the same inputs when< p*

the conservative limit, the second term vanishes, placing sgbse+he tunable choice function (17) allows fuzzy ART to learn

The | is th th bset choi bol ?rﬁultiple categorizations ag is increased or decreased, and
e largera 1s, the narrower e Subset choice parabola Iy ocags each categorization through its own vigilance level.

y!eldmg a searph that is more selective in terms Of. CategoI%turning to the example of Fig. 1, it can thus learn the
size. Note that in the particular case where= 1, (17) simply tulips and flowers categories in either order, and recall either

reduces to (14). . . " :
. . . . t t td b tulips.
Like in (2), choosinga close to zero predisposes fuzzycal egory Ih response fo an input describing tiips

ART to stability rather than plasticity, and the limit —
0 guarantees that the subset choices for an inpugke
precedence over all other categories. It is imperative to determine whether the proposed model
Lemma 1 (Learning on a Single Trial)Assume fuzzy self-stabilizes across several vigilance levels, and if so,
ART with the tunable choice function (17§,= 1,0 < p < 1, whether the vigilance levels can be arbitrarily chosen. Let
and o — 0. An equilibrium state is reached after a singleis first examine the effect of alternating vigilance between
presentation of a list of arbitrarily chosen analog inputs.  two levels,p~ and p™. After learning has stabilized once at

B. Stable Category Learning with Variable Vigilance

A proof is given in Appendix C. p~ and then once att, p~ < pt, additional learning may
still take place upon returning tp~. Indeed categories that
V. MULTIPLE CATEGORIZATION were previously undersized at- may be selected during

the trial held atp™. The hyperrectangles of these categories

A. Discrimination and Generalization may grow, making them more attractive for selection and

. _ further growth back ap~. (By contrast, the original fuzzy
In the tunable choice function (14) acts as a dual- zpT would remain in equilibrium fromp* to p= by lack of

purpose vigilance-tuning parameter. It simultaneously |imib°‘eneralization.) This leads to a lemma, whose proof is given
the category growth, and tunes the attentional SUbSyStemiﬁoAppendix E.

categories of a certain size. To tune the netwarknust be Lemma 4: Assume fuzzy ART with the choice function
variable, that is, free to change between input presentatiowﬁ) and let) < p~ < pt < 1. By holding trials alternately

V\{ithout re.setting the netwqu weights. (The idea of varyingt o~ and atp™, the number of categories satisfying
vigilance is not new. For instance, empirical results on the

use of an adaptive vigilance strategy in the vigilant net are M(1-ph) < |R;| < M(1—p7) (20)

presented by Burke [17].) In this section we analyze the effect

of a variable vigilance on the category learning process andn increase or remain the same, but not decrease.

on the self-stabilization of fuzzy ART. Self-stabilization with Now let us defineself-stabilizationas reaching an equilib-

fixed vigilance has been documented at length [3], [6], [L1]rium state on a finite number of learning trials for any finite
Suppose broad categories are formed by a fuzzy AREt of inputs. This prevents the creation of an infinite number

network during a learning trial held at a low vigilance levebdf categories, or perpetual category updates, upon repeated
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presentations of some inputs. This definition has been usad
for analyzing fuzzy ART's stability for a fixed vigilance [3],
[11], [12], [18].
According to this definition, fuzzy ART is stable for a
variable vigilance, provided the choice function meets theherex now denotes aabstractionparameter().3611 < x <
fifth requirement of Section Il (a mild condition). This canl. Setting x close to 0.3611 yields large hyperrectangles
be stated in a theorem, whose proof is given in Appendix Fonly, whereas setting it close to one allows both small and
Theorem 1 (Stable Multiple Categorizationfissume fuzzy large sizes. It is imperative for stability that newly committed
ART with g = 1 (fast learning), and a choice function sucltategories pass the abstraction test. This can be achieved
that learning necessarily increases the choice function valne modifying the learning mechanism so that categories are
of the selected category. An equilibrium state is reached oommitted with a minimum size equal t(1 — <)M (1 — p).
a finite number of learning trials, in response to arbitrary
orderings of arbitrarily chosen analog inputs, whewaries V. SIMULATION RESULTS
from trial to trial with values arbitrarily taken from a finite
set0 < p < L. _ _ _ A. Flowers Data
Corollary 1: Fuzzy ART with the choice function (17) has ] . o
the stable multiple categorization property for any value of First we illustrate the multiple categorization faculty by
the parametery, a > 0. pursuing the example of Fig. 1. Two-dimensional fictitious

Proof: By virtue of (17), learning increases the value ofldta belonging to three classes labeled “tulips,” "roses,” and
the choice function of the selected category, that igit£ 0, Stcks,” are presented to a fuzzy ART neural network with
then 702 . 7 |ndeed the choice function (14), while the vigilance level is varied

J J .

between 0.9, 0.75, and 0.5. Labels are of course withheld from
(new) (old) _ 2 aM (new) 5 the network, and the network weights are not reset on changes
I; I =M - M—8(1—a) (17771 =S) of the vigilance level.
— (M — dy)? A geometrical interpretation of the results of this simulation
is shown in Fig. 3. Once learning has stabilized across all the

|I/\1UJ| <1

|I| - Ii(l - ﬁ)(l - p) (23)

+ o (|Rf,°ld)| —S+dy)*  vigilance levels, a total of five categories can be recalled by the

2M -850 - 0‘2) network: three correspond to tulips, roses and sticks, a fourth
=M"— (M —dj) corresponds to “flowers,” that is, a combination of tulips and

>0. (21) roses, and a fifth corresponds to all the inputs. The category

selected for a given input depends on the current vigilance
m level. For example, in response to an input describing tulips,
The stable multiple categorization property implies thathenp = 0.9, the network selects the tulips category; when
there exists no finite list of inputs and vigilance levels that = 0.75, the same network selects the flowers category; and
could trigger the creation of an infinite number of categoriesshenp = 0.5, it selects the category in which all the patterns
or produce endless category updates. This self-stabilizatiorare lumped together. The hyperrectangles selected when the
essential in many critical applications. Vigilance can thus hégilance is equal to 0.9, 0.75, and 0.5 are shown in Fig. 3(a),
increased or decreased in any number of steps, which can béxf and (c), respectively.
any size. It can also be chosen at random before each learning
trial or each input presentation. Vigilance levels that are clogg Binary Patterns
together will share many categories, whereas vigilance level

that are far apart will share few, if any, categories. ﬁ:lg. 4 shows the results of a computer simulation in which

binary patterns from [6] are presented to two fuzzy ART neural
) o networks. The left part of the figure shows four patterns labeled
C. Abstraction Criterion A, B, C, and D being repeatedly presented as time elapses
In some applications it may be useful to reinforce genefrom the top down. The vigilance level used is shown next
alization by completing the vigilance test with abstraction to each pattern. From trial to trial, low vigilangg = 0.5)
test Indeed the generalization provided by the choice functi@iternates with high vigilanc€p = 0.8). The middle part
(17) is “gentle” in comparison with the discrimination em-of the figure shows the categories learned and recalled by a
bodied in the vigilance test: small subset choices can alwdygzy ART neural network using the original choice function
be selected for lack of better nonsubset choices, whereas (Pewith o = 0.1M. A number appearing under a category
vigilance test sets a hard limit to category size even if thigdicates that this category is searched, and the letters “RES”
implies creating new categories. The object of an abstractithdlicate resonance. Last, the right part of the figure shows
test would mirror that of the vigilance test, and aim at rejectirifie categories learned and recalled when the tunable choice
categories that are small and close to the input, while acceptiiigiction (14) is used. Throughout the simulation both networks
ones that are larger and more distant. One possible abstracttm set to fast learning3 = 1).
test is given by In this example, the two networks learn the same categories.
After the first trial, they have learned Category 1, which
|Rf,“e‘v)| > k(l—r)M(1—-p) (22) corresponds td A,B,C,D}. After the second trial, they have
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learned Categories 2 and 3, which correspondA¢B} and
{C,D}, respectively.

Having learned the same three categories, the two networks
recall them differently. In the case of the original choice
function, whetherp = 0.5 or p = 0.8, the same categories
are recalled, namely Categories 2 and 3. Category 1 does not
win anymore, even at low vigilance = 0.5). It has been
eclipsed by the other two.

By contrast, the categories recalled by the tunable network
change according to vigilance. When= 0.8, Categories 2
and 3 are recalled, whereas when= 0.5, Category 1 is
recalled. Two distinct categorizations are thus activated by a
change of vigilance.

VI. CONCLUSION

The choice function of fuzzy ART has been modified to
include a tuning parameter under external control that can
bias the internal competition between categories in favor of
categories of a desired size. This attentional tuning mechanism
allows recalling for a same input different categories under dif-
ferent circumstances, even when no additional learning takes
place. This behavior cannot be duplicated by the conventional
choice function, in which the order of search through the
categories is fixed.

The modified choice function does not interfere with the
orienting subsystem, the vigilance test, nor the learning of the
fuzzy ART model. A single parametgr can be used both
for vigilance and for attentional tuning. The resulting network
can generalize and discriminate, and has been shown to reach
an equilibrium state after a finite number of learning trials for
arbitrary orderings of arbitrarily chosen values of the vigilance
parameter. This work illustrates the flexibility of the ART
framework, and its potential for a wide range of applications.

APPENDIX A

In this appendix, we present proofs that the choice function
(14) meets the five requirements of Section Ill.
Lemma A.l:lf d; = d; =0 and||R;| — S| < ||Ri| — S|,
thenZ; > 1;.
Proof: If d; =d; =0 and||R;| — S| < ||R;| — &], then

(IB;| = 8)* <(|Ri| = 8)?
M? —(|Rj| = 8)* > M? — (|Ri| - S)°
1 >T; (24)

for all 4, 4,4 # j. [ |
LemmaA2:lf d; = d; = d # 0 and ||R;| — (S —
d)| < [|R;| — (S = d)], thenT; > T;.
Proof: If dj =d;, =d and ||RJ| — (S — d)| < ||R7| —
(S — d)|, then

Fig. 3. A fuzzy ART neural network modified with the choice function (14) 9 9 9 2

has learned five categories while the vigilance level was varied between O.QM—d) _(|Rj |—(5—d)) > (M—d) —(|Ri |—(5— d)) (25)
0.75, and 0.5 without resetting the network weights. After stabilization, the

categories recalled are shown for the three vigilance levels, in (a), (b), and P p

(c), respectively. Rectangles and category labels are provided for convenie@d 1 > T; for all ¢, 4,7 # j. u
only. @p =09 () p =075 (c)p = 0.5

Lemma A.3:If |R;| = |R;| andd; < d,, thenZ; > T;.
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Categories learned and recalled

Inputs Original network Tunable network
a | vig wi1 w2 w3 Wi w2 w3
Al IMhos 11 1]
RES RES
B 4 +us 05 1 1
RES RES
C o Aha 05 o o
RES RES
D W WE:os |1 £y
RES RES
Al TR os S | A |
1 RES 1 RES
B 4 -ag 08 i la= S -
1 RES 1 RES
C A Aa 08 s lam A S - o
1 2 RES 1 2 RES
D ¥ X os we lam A5 s lam A
1 RES 1 RES
Al TR os s lam A wr lam A
RES RES
B 4 -aa 05 v lam A2 v lam
RES RES
C o A 05 s lam A9 s lam A
RES RES
D 3 M os s lam A i lam A
RES RES
Al TR os s lam A s lam A%
RES RES
B 4 gz 08 s lam A wr lam A
RES RES
C A A%a 08 s lam A S I
RES RES
D & M o8 5 laa A s lam A
RES RES

Fig. 4. Binary pattern learning example, showing the categories learned by fuzzy ART neural networks with the original and tunable choice ifimctions s
by side. Time elapses from the top down. The two networks simultaneously learn the same three categories, but recall them differently afterwards.

Proof: This pertains only to committed categories. (Inif the desired size satisfies
deed if a _single one afor j is uncommitted, thefR;| # |R;l, S< M(1—-p). 28)
whereas if bothi and j are uncommitted, thed; = d;.) The
partial derivative of (14) with respect to distance is
T}
ad,

Lemma A5:1f d; = d' > 0, thenT™™ > T4
= —2(M —d;) - 2(|R;| — S+ 4d;) Proof: If J is not a subset choice, thén< d; < M,
and it can be verified that

TE) _ D — a2 (R = 8)2 — (M — dy)?
+ (RS = S+ dy)?

= —2(M +|R;| - S). (26)

Since0 < & < M, and for committed categorig€s< |R;| <
M, we obtain

. a2 (old) _Q\2
g% <0, if jis committed @7) =M= (IR |+dJ)1d S)
J — (M —ds)? + (|RS'V| = S+ di)?
_ " =M%~ (M —dy)?
Lemma A.4:If |R;| = S andd; = 0, then (10) is met.
>0 (29)

Proof: If d; =0, then|Rf,“e‘v)| = |RS°ld)| = &, and by
virtue of (10), the choice function (14) meets the requiremehblds true. [ |



LAVOIE et al. GENERALIZATION, DISCRIMINATION, AND MULTIPLE CATEGORIZATION

APPENDIX B

A lower-bound on the user-defined constanis derived.

Lemma B.1:If 0.3611 < x < 1, andd; = 0, then
T, > T, for T,, = -82,8 = kM(1—p),0 < p < 1,
0 < |Rj| £ M(1-p), anda > 0.

Proof: Since the subset choice parabola reaches its mi

imum at size|R;| = M(1 — p) = §/k, we must findx that
satisfies?; > T, that is

2
' 2 2 OCM §_ 2
T, +8 =M 7M—S(1—a)<‘ S) +S
M 1-r\?
:M2— ¥ SQ SQ
M—-5(1-«) < K ) +
>0 (30)
and thus
1-r\> _ (M2 +8%)(M -8+ aS)
< K ) = aMS? ' (31)

765

Proof: First, by (8) and the subset choice definition, once
a category has coded an inplytthis category is and remains
a subset choice faF. Second, as a consequence of submitting
all hyperrectangle growths to the vigilance test (10), subset
choices continue to pass this test as long &sheld constant.
jFpird, by Lemma B.1, the choice function of subset choices
remains above the threshdly corresponding to uncommitted
categories. [ |

Corollary C.1: Assume the hypotheses of Lemma C.1. The
number of categories committed is less than, or equal to the
number of distinct inputs.

Proof: After one learning trial there is at least one subset
choice for each input. By Lemma C.1 this subset choice can
be searched; > 7,), and can pass the vigilance test if the
input is presented again. Therefore no uncommited category
can be searched, nor committed. [ |

After one learning trial, there is at least one subset choice
for every input. By Lemma C.1, all subset choices can be

To minimize the right hand term, we take the partial derivativearched and pass the vigilance test, and at the conservative

with respect toa
9 ((M*4+8H)(M—-S+aS)\
da aMS? o

(M? + 8%(S - M)
aZMS?

(32)

and find that it is monotonically decreasingdf< A, which
is the case. At the limitvx — o, (31) becomes

2 2
<M+S.

11—k 2
K - MS

(33)

limit, (17) guarantees that these subset choices take precedence
over all other categories. Consequently, in subsequent trials,
all inputs activate subset choices, and no additional learning
occurs. An equilibrium state is thus reached after a single trial.
Note, however, that the final category assignment may differ
from that obtained during this first trial.

APPENDIX D

Lemma 3 (Generalization)Assume fuzzy ART has

Now taking the partial derivative of the right hand term witheached an equilibrium state at. With the choice function

respect toS
2 M?+8*\ 8- M?
as MS M8

we find that it is monotonically decreasing|#| < M, which
is again the case. To maximiz&, we setp = 0, and (33)

(34)

reduces to
2 2
1—r 1+x
< n) < +r (35)
K K
which can be written
2 —k?2+3r—1>0. (36)

The real root of this third-degree polynomial is equal t

0.3611, and corresponds to the minimum value sofguar-

anteeing that all the subset choices that can pass the vigilance

(2), it remains in the same equilibrium state as long as
p < pT, whereas with the choice function (17), it can learn
more from the same inputs when< pT.

Proof: First we prove that with (2) the categorization
is fixed. Assume an equilibrium state at. Whenp < pt,
subset choices activated at necessarily pass the vigilance
test and therefore no new category can be committed. Now
suppose that whep < p*, I could activate a category
different from that activated at*, say j, and that learning
occurs, meaning; # 0. This implies?’; > T;. But since the
choice function is independent ¢f it is J, instead ofj, that
would have been chosen férat pT. The only alternative is if
9 had failed the vigilance test at= p*, which would imply

|Ry|+dy > M(1— pt)

test remain above threshold. ]
= | R;l. @37)
APPENDIX C But then

We prove Lemma 1, which states that under certain condi- M- |Ry|—dy M — |Ry]|
tions, fuzzy ART with the tunable choice function (17) reaches  “7 ~ 7~ ¢ 4T M —|R;| o+ M — IR,
an equilibrium state after a single presentation of an arbitrary (M —|Ry| — dj)(a+ M — |R|)
list of analog inputs. The proof is based on another lemma - (a+ M —|Rj[)(a+ M —|Ry])
and a corollary. (M = |R;|)(a + M — |Ry])

Lemma C.1:Assume fuzzy ART with the tunable choice — T J
function (17),5 = 1, 0.3611 < » < 1, and fixedp. Once (0 + M — |Bs|)(a+ M —|Rj])
a category has been assigned to an input, it can always be _ o187y = (1Ryl +4dy)) — ds(M — |R,)
searched, and pass the vigilance test for this input. This holds (a+ M —|Rs|)(a+ M —|R;])
true for any value of the parametat « > 0. <0 (38)
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and j, instead ofJ, would be chosen fod at p < p*, (39). Atp™, two more categories are committed with resulting
contradicting our supposition. Therefore for all < p*, T weight vectorsws; = (0.5,0.5) and wy = (0.4,0.6). At
activatesy, and the network remains in the same equilibriurthis point I,, I,, and I3 activate the categories 3, 4, and
state. 2, respectively. Back ap—, I; and I, activate Category 1,
An example will suffice to prove that with (17) the categowhile I3 activates Category 4 with resulting weight vector
rization is mutable. Assume thdtl = 1,x = l,a« = 1, and w4 = (0.3,0.6). As a result, two of the categories, 1 and 4,
pT = 0.9. In response td; = (0.5,0.5), a first category is satisfy (39). [
committed, with resulting weight vectap; = (0.5,0.5). In
response td» = (0.4,0.6), Category 1 is chosen, passes the APPENDIX F

vigilance test . . .
9 Using a simple numerical argument, we prove Theorem 1,

which states that fuzzy ART with a choice function that meets

M = the fifth requirement of Section Ill reaches an equilibrium state
in finite time for an arbitrary list of inputs, and for an arbitrary
gst of vigilance levels. Assume an input set containing a finite
numberK of distinct analog inputsly, I, - - -, Ik, that have
been complement coded. The proof is based on three lemmas.

3 A wn | =0.89 ¥ 0.9. Lemma F.1:If 8 = 1, then there ar@’ or less possible
M values for the weight vectors.

A second category is committed, with resulting weight vector  Proof: When in fast learning, the weight update equa-
wy = (0.39,0.61). At this point learning has stabilized at, tion reduces to (8). Since the fuzzy AND operator is both
and the inputd,, I,, andI5 activate the categories 1, 1, anccommutative and associative, the order of the assignments of
2, respectively. Next decrease the vigilance level to 0.8. incategory; to the inputs has no effect on the end valuaugf
response td;, Category 1 is chosen over Category 2. Indedd addition, sincel A I = I, repeated assignments pfto an

and its weight vector becomes; = (0.4,0.5). In response to
I3 =(0.39,0.61), Category 1 is chosen, and fails the vigilanc
test

input leavesw,; unchanged. The value ad; is thus uniquely
Ti(Is)=(2|IsA — M(1 — . J . J,
1(I3) = (2] ° wi| = fun| + M1 = p)) determined by the assignment or nonassignmerjttofthe K
“(lwi| = M(1 - p)) inputs. From set theory, there a@& possible subset choices
=(1.78 - 0.9+ 0.2)(1.1 — 0.2) = 0.972 in a K-element space, and therefd2& possible values for
Ta(I3) = (2 I3 A wz| — |wa| + M(1 - p)) et "

Lemma F.2: Assume fuzzy ART with the tunable choice

(lw3] = M(1 - p)) function (17). All committed categories have different weight
=(2-1+0.2)(1-0.2) =0.960 vector values.

- Proof: If it were otherwise, then when a categody
and 1 (1 T,(I3). Then Category 1 passes the vigilance
1(I3) > 1>(1s) gory L p 9 would be assigned to an input the corresponding weight

test
vectorw; could take the value of another weight vectoy,
W =0.89 > 0.8 J # j. In other words,
(new) _
and its weight vector becomes;, = (.39,0.5). So fuzzy ART Wy =W (40)
with the choice function (17) can generalize. B with d; = 0. Since the choice function is such thatif # 0,
then 7" > T4V we haveT, < T;. ThereforeJ can
APPENDIX E only be activated ifj failed the vigilance test at the current
Lemma 4: Assume fuzzy ART with the choice functionVigilance level. But then
(17), and let0 < p~ < pT < 1. By holding trials alternately R dr =R
g R : Ny |Ry|+ds =R,
at p— and atp™, the number of categories satisfying
> M(1 - p) (a1)
M —pt) <|R;| < M(1—p7) (39)

and category/ also fails the test. Therefore the value of the

can increase or remain the same, but never decrease.  weight vector of each committed category is unique. =

Proof: At pT, a category that satisfies (39) fails the Lemmas F.1 and F.2 together guarantee that no more than
vigilance test, and is therefore conserved. /At, the same (2% — 1) categories can be committed, regardless of the
category passes the test, but cannot grow so large as to failmber of times the inputs are presented, and regardless of
it afterwards. Hence the number of categories satisfying (3@ vigilance levels. One condition to stability is thus met.
cannot decrease. To show that this number can increase, abemma F.3: Assume Fuzzy ART with the tunable choice
example will suffice. Assume that/ = 1, x = 1, p~ = 0.9, function (17). Equilibrium is reached aftef<(2X — 1)/2 or
and pt = 0.95. First assumep = p~. In response td; = less weight vector changes.
(0.5,0.5), I, = (0.4,0.6), andI3 = (0.3,0.7), two categories Proof: By virtue of (8), weight vectors cannot cycle
are committed with resulting weight vectots; = (0.4,.5) through previous values. We have shown in Lemma F.2 that
andw: = (0.3,0.7). The inputsl;, I, and Is activate the all committed categories have different weight vector values,
categories 1, 1, and 2, respectively. Only Category 1 satisfeasd in Lemma F.1 that there are no more ti2n possible
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values, including one for uncommitted categories. Thereforer] L. Burke, “Conscientious neural nets for tour construction in the
wy, the weight vector of the first category to be committed, traveling salesman problem: The vigilant ne€8mput. Operations Res.

vol. 23, no. 2, pp. 121-129, 1995.

°
cannot undergo more tha@™ — 1) changesw, more than [1g] p. Lavoie, J.-F. Crespo, and Y. Savaria, “On the stability of fuzzy ART,”

(2[&'

on.

— 2) changesws; more than(2X — 3) changes, and so in Proc. 18th Biennial Symp. CommuQueen’s Univ., Kingston, Ont.,
Proceeding inductively, we obtain that the total number Canada, June 2-5, 1996, pp. 185-188.

of weight vector changes for all possible categories cannot
exceed2® (2K —1)/2. ]

By definition, every learning trial prior to equilibrium must
change at least one weight vector. Since by Lemma F
equilibrium is reached afte’ (2% — 1)/2 or less weight
vector changes, it is reached affdr (2% —1)/2 or less trials,
and thus in finite time. Note that this loose upper bound
independent of the vigilance levels used.
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